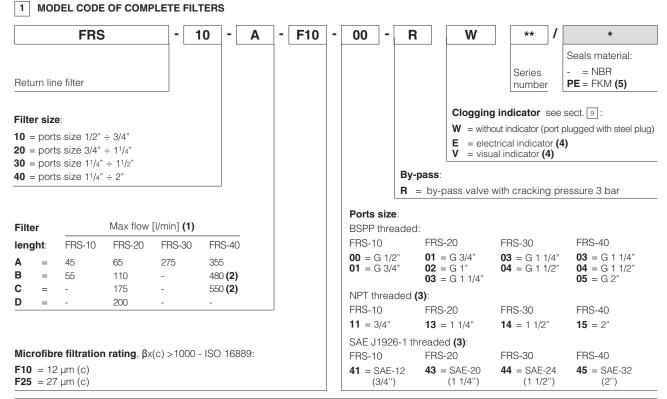


Return line filters, tank-top type FRS

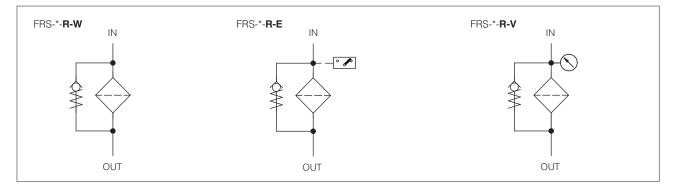
Threaded ports - max flow 550 l/min, max pressure 8 bar

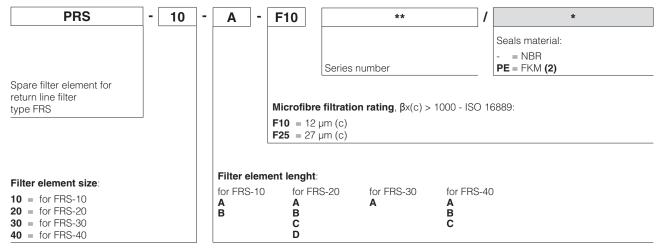


FRS return line filters are designed to protect pumps and the whole hydraulic circuit from contamination present in the working fluid.

They are specific for installation on the top of the hydraulic tank.

FRS filters are available with following features:

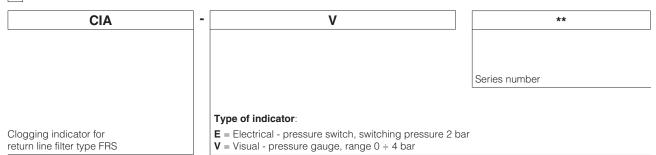

- four body sizes with BSPP, NPT or SAE threaded ports, from 1/2" to 2"
- four filter lengths with max flow up to 550 l/min
- by-pass valve with cracking pressure 3 bar
- microfibre filter element with filtration rating 12 or 27 μ m(c) (β x (c) >1000, ISO 16889)
- without or with electrical or visual clogging indicators


(1) Max flow rates are performed in following conditions:

- clean filter element
- filtration rating F25 (27 µm (c))
- largest ports size
- $-\Delta p = 0.5$ bar
- mineral oil with viscosity 30 mm²/s
- In case of different conditions the max flow rates have to be recalculated see section 10
- (2) For FRS-40 with lenght B and C the max flow is limited by the max flow velocity allowed in the pipe connections
- (3) Filters with NPT or SAE threaded ports are available on request
- (4) The clogging indicator is supplied disassembled from the filter. The indicator port on filter head is plugged with steel plug
- (5) Filters with FKM seals are available on request

2 HYDRAULIC SYMBOLS (representation according to ISO 1219-1)

3 MODEL CODE OF FILTER ELEMENTS - only for spare (1)



(1) Select the filter element according to the model code reported on the filter nameplate, see section 14.1

(2) Filters with FKM seals are available on request

note: the spare filter element includes the by-pass valve

4 MODEL CODE OF CLOGGING INDICATORS - only for spare

5 GENERAL CHARACTERISTICS

Assembly position / location	n	Vertical position with the bowl downward						
Ambient temperature range	e	Standard = $-20^{\circ}C \div +70^{\circ}C$ /PE option = $-20^{\circ}C \div +70^{\circ}C$						
Storage temperature range		Standard = $-20^{\circ}C \div +80^{\circ}C$ /PE option = $-20^{\circ}C \div +80^{\circ}C$						
Materials	Filter head	Alluminium alloy						
	Filter bowl	Nylon for FRS-10, FRS-20, and FRS-30; steel for FRS-40						
Surface protection		Zinc plated (only FRS-40)						

6 HYDRAULICS CHARACTERISTICS

Filter size			10 20						30			40							
Port size coc	le	00	01	11	41	01	02	03	13	43	03	04	14	44	03	04	05	15	45
Ports	BSPP	1/2"	3/4"			3/4"	1"	1 1/4"			1 1/4"	1 1/2"			1 1/4"	1 1/2"	2"		
dimensions —	NPT			3/4"					1 1/4"				1 1/2"					2"	
SAE	J1926-1				12					20				24					32
Max operating 8 pressure (bar)																			
Max flow (1) (I/min)		44 ÷ 53		45÷55		59 ÷ 125	60 ÷ 192 65÷200			263		275		325 343 ÷ ÷ 512 530		355÷550			
Direction of filtration See the arrow on the filter head																			

(1) Max flow rates are performed in following conditions:

- clean filter element - filtration rating F25 (27 μm (c))

Intration rating r25 (27 μm (c))
Δp 0,5 bar
min ÷ max filter lenght
mineral oil with viscosity 30 mm²/s
In case of different conditions the max flow rates have to be recalculated - see section 10

7 FILTER ELEMENTS

Material		Inorganic microfibre
Filtation rating as per ISO16889	F10	β _{12µm (c)} ≥1000
	F25	β _{27µm (c)} ≥1000

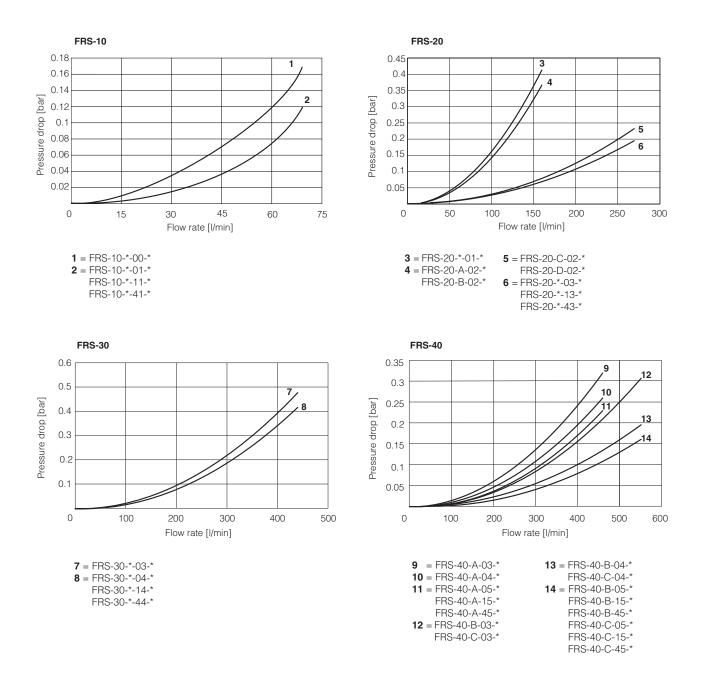
8 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

Seals, recommended fluid temperature	, recommended fluid temperature NBR seals (standard) = $-25^{\circ}C \div +100^{\circ}C$, with HFC hydraulic fluids = $+10^{\circ}C \div +50^{\circ}C$ FKM seals (/PE option) = $-25^{\circ}C \div +100^{\circ}C$								
Recommended viscosity	15 ÷ 100 mm²/s - max allowed range 2.8 ÷ 500 mm²/s								
Hydraulic fluid	Suitable seals type	Classification	Ref. Standard						
Mineral oils	NBR, FKM	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524						
Flame resistant without water	FKM	HFDU, HFDR	ISO 12922						
Flame resistant with water	NBR	HFC	130 12922						

9 CLOGGING INDICATORS

Model code	CIA-E e	electrical	CIA-V visual				
Switching pressure	2 bar		green sector = $0 \div 1$ bar yellow sector = $1 \div 1,5$ bar red sector = $1,5 \div 4$ bar				
Switching tolerance at 20°C	± 10% of switching pres	sure	-				
Electric connection	Electric plug connection cable gland type PG7	as per DIN 43650 with	-				
Power supply	14 Vpc ÷ 30 Vpc	125 Vac ÷ 250 Vac					
Max current - resistive (inductive)	4 A (3 A) ÷ 3 A (2 A)	5 A (3 A) ÷ 3 A (2 A)					
Fluid temperature	-25°C ÷ +100°C	I	-25°C ÷ +100°C				
Protection degree according to DIN 40050	IP65 with mathing conne	ctor	-				
Hydraulic connection	G1/8" BSP		G1/8" BSP				
Duty factor	100%		100%				
Mass (Kg)	0,16		0,04				
Electric scheme / Hydraulic symbol	the	e electric scheme shows e switch position in case clean filter element	\sim				

10 FILTERS SIZING

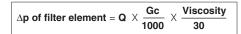

For the filter sizing it is necessary to consider the Total Δp at the maximum flow at which the filter must work. The Total Δp is given by the sum of filter head Δp plus plus filter bowl Δp plus the filter element Δp :

Total Δp = filter head Δp + filter bowl Δp + filter element Δp

In the best conditions the total Δp should not exceed 0,5 bar See below sections to calculate the Δp of filter head and Δp of the filter element

10.1 Q/∆p DIAGRAMS OF FILTER HEAD + FILTER BOWL

The pressure drop mainly depends on the ports size and fluid density. In the following diagrams are reported the Δp characteristics based on mineral oil with density 0,86 kg/dm³ and viscosity 30 mm²/s



10.2 FILTER ELEMENT Δp

The pressure drop through the filter depends to:

- size of filter element
- filtration rating
- fluid viscosity

The Δp of filter element is given by the formula:

Q = working flow (I/min)

 $\mathbf{Gc} = \mathbf{Gradient} \ \mathbf{coefficient} \ (mbar/(l/min))$. The Gc values are reported in the following table

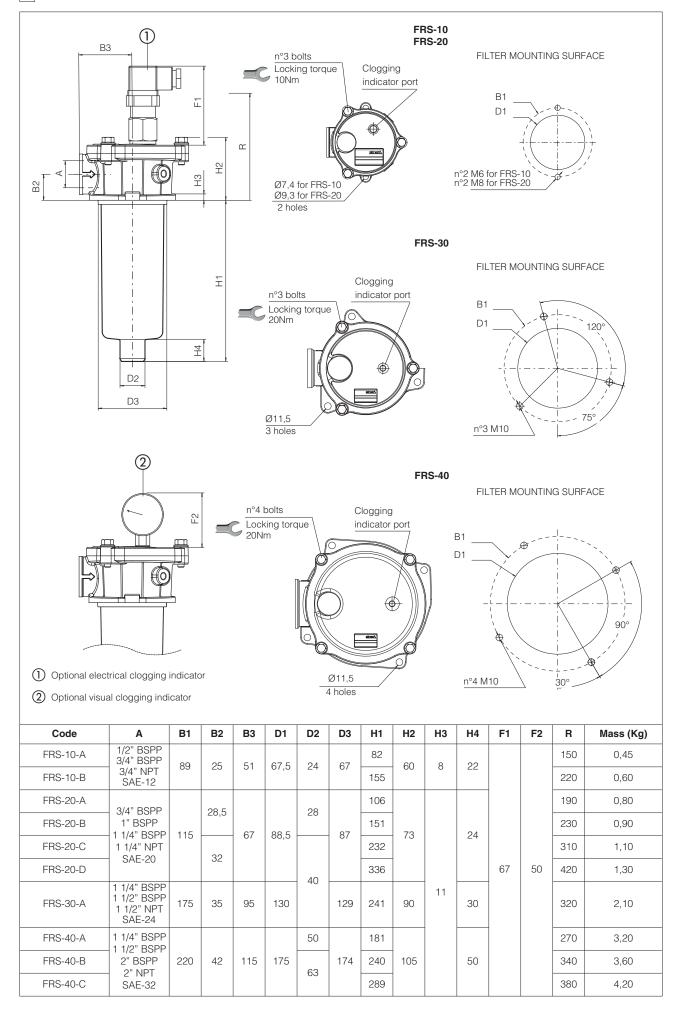
Viscosity = effective fluid viscosity in the working conditions (mm²/s)

Gradient coefficent Gc of FRS filter elements

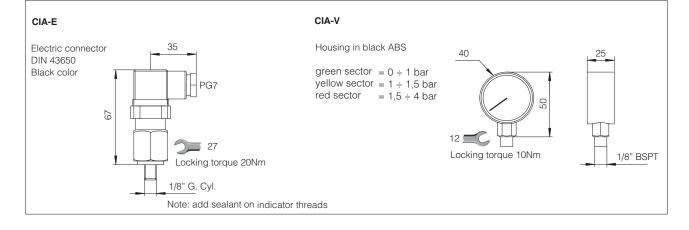
Filter element size	10			2	0		30		40	
Filter element lenght	Α	В	Α	В	С	D	Α	Α	В	С
Filtration rating	Gc Gradient coefficient									
F10	19.8	10.4	10.77	5.86	3.54	2.29	1.62	1.34	0.84	0.61
F25	9.22	7.18	7.14	3.92	2.25	1.88	1.19	0.98	0.52	0.43

Examples:

1) calculation of Total Δp for filter type FRS-20-B-F10-02-R at Q = 50 l/min and viscosity 46 mm²/s (filter element PRS-20-B-F10) Δp of filter head = 0,034 bar


Gr = 5,86 mbar/(l/min) **Filter element** $\Delta \mathbf{p} = 50 \times \frac{5,86}{1000} \times \frac{46}{30} = 0,45$ bar

Total $\Delta p = 0.034 + 0.449 = 0.48$ bar


2) calculation of Total Δp of filter type FRS-40-C-F25-05-R at Q = 500 l/min and viscosity 46 mm²/s (filter element PRS-40-C-F25) Δp of filter head = 0,13 bar

Gr = 0,43 mbar/(l/min) **Filter element** $\Delta \mathbf{p} = 500 \times \frac{0,43}{100} \times \frac{46}{30} = 0,33$ bar

Total $\Delta p = 0,13 + 0,33 = 0,46$ bar

12 DIMENSIONS OF CLOGGING INDICATORS

13 INSTALLATION AND COMMISSIONING

The tank flange with the filter mounting surface must be free of scratches.

During the filter installation, pay attention to respect the flow direction, shown by the arrow on the filter head. The OUT port of the filter can be connected to a pipe which length has to be properly sized so that its end remains under the oil level

The filter head should be properly secured using the threaded fixing holes on the filter head. Make sure that there is enough space for the replacement of the filter element.

Never run the system without the filter element.

For filters ordered with clogging indicator, code E or V:

• remove the steel plug from the indicator port on the filter head

• install the clogging indicator and lock it at the specified torque

During the cold start up (fluid temperature lower than 30°C), a false clogging indicator signal can be given due to the high fluid viscosity.

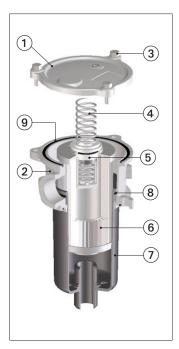
14 MAINTENANCE

The filter element must be replaced as soon as the clogging indicator switches to highlight the filter clogged condition

For filters without clogging indicator, the filter element must be replaced according to the system manufacturer's recommendations.

Select the new filter element according to the model code reported on the filter nameplate, see section 14.1 For the replacement of the filter element, proceed as follow:

- switch-off the system and make sure that there is no residual pressure in the filter line (i.e. pressurized tank); the filter has no pressure bleeading device
- pay attention to the fluid and filter surface temperature. Always use suitable gloves an protection glasses
- remove the cover ① from the filter head ② by releasing the bolts ③
- remove the spring ④ and the bowl ⑦
- remove the dirty filter element (6) pulling it upward carefully
- clean the bowl (7)
- install the bowl (7) after having checked the good condition of the seal (8)
- insert the new filter element over the spigot in the filter bowl; the filter element includes the by-pass valve (5)
- install the spring (4)
- mount the cover and lock the relevant bolts (3) after having checked the good condition of the seal (9)


WARNING: The dirty filter elements cannot be cleaned and re-used. They are classified as "dangerous waste material", then they must be disposed of by authorized Companies, according to the local laws.

14.1 FILTER IDENTIFICATION NAMEPLATE

- 1 Model code of complete filter
- Model code of filter element
- (3) Filter matrix code

